THE ROLE OF FEEDBACK ON STELLAR CLUSTER FORMATION, EVOLUTION AND INTERACTION WITH THE HOST GALAXY

Sexten (Italy) July 25-29, 2016 July 18th - 22nd

> SOC Prof. Nate Bastian (LJMU) Dr. James Dale (UOM) Dr. Angela Adamo (SU) Dr. Linda Smith (STScI) Dr. Steve Longmore (LJMU)

+ Interpreting feedback-driven structures - pillars, shells and bubbles. + Star formation rates and efficiencies and gas expulsion. + Structure and dynamics of young clusters. + The connection between SSCs and globular clusters. + Impact of cluster feedback at galactic and cosmological scales.

SEXTEN CENTER FOR ASTROPHYSICS

Multiple Populations in Globular Clusters Where do we stand? July 25th - 29th, 2016

SOC: Carmela Lardo, Nate Bastian, Alessio Mucciarelli, Soeren Larsen, Elena Pancino

Review of 1st lecture

- Young massive clusters, with masses up to 10⁸ Msun are sizes similar to GCs are still forming today
- The exist within our Galaxy (up to ~10⁵ Msun), but are difficult to find, easier in external galaxies
- Found in starbursts, mergers, dwarfs and spirals
- In some cases can use CMDs to derive properties, but in most cases we use integrated properties
- Derive their ages, masses, extinctions, metallicity
- Luminosity and mass function of YMCs is a power-law with index of -2, with a truncation at the bright/highmass end

Constraints on Gas within YMCs

10597 Hollyhead et al. 2015

Whitmore et al. 2011 Bastian et al. 2014 YMCs are gas free (expelled any remaining gas left over from the formation of the cluster) within <3-4 Myr, independent of mass

Before the first SNe

Westerlund 2 ~I-2 Myr old ESO 338-IG04 - Cluster 23

 $t = 6^{+4}$ -2 Myr $A_v = 0$ $M \sim 1 \times 10^7$ Msun $R_{bubble} \sim 120-200$ pc $Z = 0.2 Z_{sun}$

- Bubble began expanding I-3 Myr after formation
- Efficiently removed any pristine material out to hundreds of parsecs (still expanding at 40 km/s)
- Metallicity below that of Galactic globular clusters that show anomalies

Östlin et al. 2007

Constraints on Gas within YMCs

- Clusters are gas free with 3-4 Myr of their lives Hollyhead et al. 2015
- Independent of cluster mass from 10⁴ 10⁷ Bastian, Hollyhead, Cabrera-Ziri 2015
- Searches for gas in older clusters (10-200 Myr) reveal no gas, so clusters are never ever to retain stellar ejecta or accrete new material.
 Cabrera-Ziri et al. 2014

Bastian & Strader 2014

Cluster Populations

SIZE-OF-SAMPLE EFFECTS

$NdM \sim M^{-\beta}dM$

Age/Mass diagram

Gieles et al. 2006

Age/Mass diagram

BRIGHTEST CLUSTERVS. NUMBER

- Luminosity of the brightest cluster in a population is related to the number of clusters
- Larger populations have brighter clusters
- slope gives the index of the luminosity function
- size of sample effect

Size-of-sample effect

- Larger cluster populations sample further into their distribution functions (i.e. can sample the extreme ends)
- Galaxies with more clusters also have more massive and brighter clusters
- So we would expect that galaxies forming more stars (clusters) should have brighter/ more massive clusters

Wilson et al. 2006

Size-of-sample effect

 Indeed, higher SFRs result in more luminous "brightest" clusters.

Age/mass diagrams

- Basic tools to study a cluster population
- Many of the basic properties of the population can be seen, and many biases are visible (that need to be taken into account)

Size-of-sample effect

Incompleteness

function

logarithmic binning

Cluster population simulations

Effect of an upper mass limit of M=10⁶ Msun

Larsen 2009

M51 - like cluster population

If size-of-sample was the only thing, we would expect many old extremely high mass clusters

Not observed, suggesting that an upper mass limit exists within populations

Bastian et al. 2012

Cluster populations

- When looking at age/mass/luminosity functions, need to be very careful about biasing your sample
- Size-of-sample effects dominate cluster populations
- But we can see the influence of a truncation in the upper end of the mass function.

Cluster Age Distributions

- Since clusters are bright (and SSPs) they are easy to find and derive their properties
- This offers the chance to use clusters to estimate the star-formation history of the galaxy (with some assumptions)

M81/M82 INTERACTION

Yun et al. 1994

Optical

Smith et al. 2007 Konstantopoulos et al. 2008, 2009 Westmoquette et al. 2009, 2010

10.0

Cluster Age Distributions

- In many post-starburst systems there is clear evidence for a previous burst (lasting 100-500 Myr)
- But in other environments the age distribution is more tricky to analyse
- As the ages are determined in logarithmic age, we need to take that into account
- Take a mass limited sample, count the number of clusters in your age bins, and divide the bin by the linear age width of the bin

input constant SFR

apply 'observational' detection limits

apply mass cut

apply higher mass cut

dN/dt = number of clusters per linear unit time

Open clusters

 $\begin{array}{l} \hline Cluster \ disruption \\ t_{dis} \sim 300 \ Myr \\ \hline (700 \ M_{\odot} \ cluster) \\ \hline Lamers \& \ Gieles \ 2006 \\ \hline Wielen \ 1971 \end{array}$

Röser et al. 2010

The dissolution time in different environments

FIG. 4–The age distribution for all SMC clusters in the 4-m fields. Wielen's (1971) distribution for Galactic clusters is also shown, normalized at 10^8 yrs. Units in the ordinate are clusters per 10^8 yrs.

Elson & Fall (1985) Boutloukos & Lamers (2003) Lamers, Portegies Zwart & Gieles (2005)

Cluster Dissolution

- As seen in Holger's lectures, clusters do not live forever, but are expected to dissolve on timescales that depend on their environment
- For cluster populations (mass limited) this should result in a flat portion (dN/dt) followed by a decrease as disruption begins to 'eat into' the population
- So we would not expect a single power law to fit the data well.
- High mass clusters are expected to live longer than lower mass clusters

Mass Dependent Disruption (MDD)

- Cluster lifetime depends on mass and enviroment
- Age/mass distributions evolve and change
 This is what is expected from theory/ simulations

Mass Independent Disruption (MID)

 Cluster lifetime *does not* depend on mass or environment

 Age/mass distributions are "universal" g(M,t) ~ M⁻² t⁻¹

> Fall et al. 2005, 2006 Whitmore et al. 2007 Chandar et al. 2010

Boutloukos & Lamers 2003 Lamers et al. 2005 Gieles et al. 2007 Bastian et al. 2012

 $0 < \zeta < 1$

 $dN/dt \sim t^{-\zeta}$

 $\zeta = 1$

Silva-Villa et al. 2014

Galaxy	age range	ζ	Reference
SMC	20-1000 Myr	0.0 ± 0.1^{c}	[Gieles et al.(2007)]
M31	5 – 100 Myr	0 - 0.15	Fouesneau et al. 2014
NGC 2997	10 – 100 Myr	0.1 ± 0.2	Ryon et al. 2014
M5 1	10-300 Myr	$0.15\!\pm\!0.2$	Hwang & Lee 2010
Solar neighbour- 5 – 300 Myr		0.3 ± 0.15	Lamers et al. 2005
hood			
LMC	10 – 100 Myr	0.3 ± 0.15	Baumgardt et al. 2013
M33	10-100 Myr	0.3 ± 0.2^a	Gieles & Bastian 2008 ^b
NGC 1566	5-300 Myr	0.4 ± 0.15	Hollyhead et al. in prep.
NGC 4041	5-200 Myr	0.4 ± 0.2	[Konstantopoulos et al.(2013)]
NGC 4449	5-500 Myr	0.5 ± 0.15^{a}	Annaballi et al. 2011
NGC 7793	10 – 500 Myr	0.55 ± 0.2	Silva-Villa & Larsen 2011
NGC 1313	10 – 500 Myr	0.6 ± 0.1	Silva-Villa & Larsen 2011
M83	10 – 500 Myr	0.25 ± 0.1	Silva-Villa & Larsen 2011
M83 F1	1-1000 Myr	0.9 ± 0.2	Chandar et al. 2010b
M83 F2	10 – 1000 Myr	0.5 ± 0.2	Chandar et al. 2014
M83 F2	5-300 Myr	0.15 ± 0.15	Chandar et al. 2014 catalogue
M83 (F1-F7)	10 – 300 Myr	0-0.6	Silva-Villa et al. 2014
M83 (Full sam	- 10 – 300 Myr	0.35 ± 0.15	Silva-Villa et al. 2014
ple)	-		
Antennae	5 – 500 Myr	0.85 ± 0.15	Whitmore et al. 2007, 2010
	_		

Adamo & Bastian 2015

Adamo & Bastian 2015 simulations from Kruijssen et al. 2012

30 kpc

-0.09 Gyr

Cluster Dissolution Summary

- Cluster's don't live forever, but disrupt due to internal and external processes
- Interactions with GMCs are the biggest killer of young clusters
- Two empirical cluster disruption scenarios, I) where disruption depends on mass/environment (MDD) and 2) where it doesn't (MID)
- The observed age distributions agree with the MDD scenario, which is good as this also agrees with theory/ expectations

Stellar populations within YMCs

- See Estelle's lecture on stellar pops and the stellar IMF
- As YMCs are extreme, we might expect that the form of the IMF within them is different.
- Perhaps they are over/under abundant in low mass stars?

FAMOUS FORMS OF THE IMF

Ζ

Ь0 О

Salpeter (1955) -N(dM) ~ M⁻¤dM - pure power law

Chabrier (2003/2005) - power-law above a certain mass (~0.8 Msun), log-normal below

Kroupa (2001) - Multiple power-law segments

de Marchi et al. (2005) - Tapered power-law

The IMF within YMCs

- Measure the velocity dispersion (a measure of the gravitational potential well) and radius of a cluster
- Use the Virial Theorem to work out the "dynamical mass"
- Compare this to the mass estimated through use of SSP models (i.e., compare the mass-to-light ratio of the clusters to that expected from models of that age)

Young massive clusters (>20 Myr)

Stellar IMF with YMC Summary

- While YMCs are extreme environments, there stellar mass functions do not appear to be very different than more typical star-forming regions/low mass clusters
- Resolved clusters in the Galaxy appear to be mass segregated
- GCs and YMCs have the same stellar IMF in the visible mass range (<0.8 Msun) if dynamical evolution is taken into account.
- However, there is evidence for very massive stars in YMCs, >300 Msun (Crowther et al. 2010)