Globular clusters Corinne Charbonnel – University of Geneva

Part I – GC general properties

Part II – Chemical dissection and multiple stellar populations in GCs Towards a new paradigm

Part III – The evolution of the multiple stellar populations in GCs

Corinne Charbonnel Dept of Astronomy, Univ. of Geneva & IRAP CNRS, Univ. of Toulouse

Multiple stellar populations and their evolution in globular clusters

Part II – Multiple Populations Towards a new paradigm

✓ Heavy elements in GCs

- ✓ Light elements and the presence of multiple populations
- ✓ Photometric signatures
- ✓ Potential polluters
- ✓ GC initial masses
- ✓ Early dynamical and chemical evolution Towards a global scenario
- ✓ Contribution to the Galactic halo

Corinne Charbonnel Dept of Astronomy, Univ. of Geneva & IRAP CNRS, Univ. of Toulouse

Milky Way GCs – Iron-peak elements

Ni, Cu, Mn

- ✓ Pre-galatic enrichment
- \checkmark Same trends as field stars

See also e.g. Harris & Pudritz (94) - James *et al.* (04)

Milky Way GCs – Iron-peak elements

✓ Most GGCs are mono-metallic \rightarrow No self-enrichment

Milky Way GCs – Iron-peak elements

Milky Way GCs – Alpha- and neutron-capture elements

See also James *et al.* (04)

Chemical dissection of Galactic GCs

Alpha-elements (Si, Ca) Neutron-capture elements (Ba, La, Eu) Fe-peak elements (Ni, Cu, Mn)

No internal scatter (exceptions: ΩCen, M54, 22, NGC 3201, 1851)
Same trends as with Z field *

GC heavy metals must come from pre-enrichment during the building and the chemical evolution of the halo (i.e., same as halo field stars) Harris & Pudritz (94) - James *et al.* (04)

No self-enrichement (except in the most massive GCs)

Light elements (C to Al) Large star-to-star abundance variations C-N, O-Na, Mg-Al, F-Na, Li-Na anticorrelations

Reviews by Gratton *et al.* (04 ARAA) & Sneden (05 IAU 228) See also James *et al.* (04)

Multiple stellar populations and their evolution in globular clusters

Part II – Multiple Populations Towards a new paradigm

- ✓ Heavy elements in GCs
- ✓ Light elements and the presence of multiple populations
- ✓ Photometric signatures
- ✓ Potential polluters
- ✓ GC initial masses
- ✓ Early dynamical and chemical evolution Towards a global scenario
- ✓ Contribution to the Galactic halo

C-N anticorrelation

M15 subgiants [Fe/H] ~ -1.21

O-Na anticorrelation in Galactic globular clusters A general property

O-Na anticorrelation in GCs of the local group

3 old LMC clusters: NGC 1786, 2210, 2257 Mucciarelli *et al.* (09)

Evidence of Na-enrichment in GCs of the local group

GC in the dwarf WLM galaxy using synthetic integrated-light model spectra Mean Na for GGCs, and Na in field stars Larsen *et al.* (14)

C.Charbonnel-GCsl-EES 2015 Nov 7

[Mg/Fe]

Mg-Al anticorrelation and Mg isotopes

 $\frac{\text{NGC 6752}}{[\text{Fe/H}] = -1.42}$

Yong *et al.* (03)

²⁴Mg declines slightly with increasing Al abundance Shetrone (96)

 25 Mg ~ constant over the 1.1 dex range in Al abundance

 26 Mg is well correlated with Al abundance, with a total spread of a factor of ~ 4

Same in M3 and M71 Yong *et al.* (05)

Mg-Al anticorrelation and Mg isotopes

 $\frac{\text{NGC 6752}}{[\text{Fe/H}] = -1.42}$

Yong *et al.* (03)

« To the extent that it's possible, it is the isotopes that keep the theorists honest » Dave Arnett

C-N, O-Na, Mg-Al anticorrelations

H-burning through CNO, NeNa, MgAl at T \sim 72 to 78 MK

Prantzos, Charbonnel & Iliadis (07)

 $\begin{array}{l} T \geq 15 \ x \ 10^{6} \ K : \ CN \\ T \geq 25 \ x \ 10^{6} \ K : \ CNO, \ ^{22}Ne \rightarrow ^{23}Na \\ T \geq 40 \ x \ 10^{6} \ K : \ CNO, \ ^{20}Ne \rightarrow ^{23}Na \\ & \ ^{25,26} \ Mg \rightarrow ^{26} \ Al, ^{27}Al \\ T \geq 70 \ x \ 10^{6} \ K : \ ^{24}Mg \ (and \ ^{25, 26} \ Mg) \rightarrow ^{26} \ Al, ^{27}Al \end{array}$

C-N, O-Na, Mg-Al anticorrelations

H-burning through CNO, NeNa, MgAl at T ~ 72 to 78 MK

120 H-burning temperature 110 Geneva models 100 06 (MK) burning 80 70 of H 60 х<mark>у</mark>50 _ 40 Main Sequence 30 20 Long-lived low-mass stars 10 100 $M(M_{\odot})$

Prantzos, Charbonnel & Iliadis (07)

The observed patterns *pre-existed* in the material out of which the presently surviving stars formed

Implies pollution of the intra-cluster gas by a first generation of more massive rapidly evolving stars in which H burns at ~ 72-78MK!
→ Formation of second population of stars

Lithium abundance variations – Li-Na anticorrelation

Li is a very fragile element (burns at ~ 2.5 MK) Its presence implies *dilution of polluted matter with pristine intra-cluster gas*

Internal transport processes (rotation, diffusion, ...) in stellar interiors are known to affect the surface abundance of Li (e.g., the Sun, open clusters, ...)

Rotation-induced mixing and Li depletion in low-mass stars

Rotating models : full lines (Palacios *et al.* 03) Observations : IC 4651 evolved stars

Internal transport processes (rotation, diffusion, ...) in stars with different He content are also expected to affect the surface abundance of Li (e.g., the Sun)

Wednesday lecture

Lithium abundance variations – Li-Na anticorrelation

- ✓ The mean lithium abundance of the metal-poor globular clusters traces well the Spite Plateau
- → Very similar internal processes (transport of angular momentum and chemicals), solid-body rotators?
- 47 Tuc has lower mean lithium abundance and higher dispersion than other globular clusters; these values are compatible with lithium abundances observed in the field stars at the same metallicity and older than 12 Gyr
- → Different turnoff mass (different Z), deeper stellar convective envelope, more spread induced by e.g. rotation

Fluorine abundance variations

Filled red : M4 stars with F determinations

<u>M4</u> (NGC 6121)

Smith *et al.* (2005)

Abundance of ¹⁹F
varies by more than a factor of 6
anticorrelated with Na and Al variations correlated with O variations

Beryllium (spallation)

✓ Be burns at ~ 3.5 MK

✓ Be is **not** produced in stars!

Dilution Cosmic Ray nucleosynthesis in the young GCs?

Pasquini et al. (07)

C.Charbonneh-IGCsstoEES12015uary 21

C.CharbonnehelGCsstoEES12015uary 21

C-N, O-Na, Mg-Al, F-Na, Li-Na anticorrelations [(C+N+O)] ~ constant within experimental errors [Fe/H] constant

H-burning through CNO, NeNa, MgAl H-burning ashes mixed with pristine gas

 \rightarrow 2d generation

No recycling of He-burning products

No recycling of supernovae ejecta, except in some rare (most massive) cases (e.g., Ω Cen or M22)