Multiple stellar populations and their evolution in globular clusters

Corinne Charbonnel Dept of Astronomy, Univ. of Geneva & IRAP CNRS, Univ. of Toulouse

Part II – Multiple Populations

Towards a new paradigm

- ✓ Heavy elements in GCs
- ✓ Light elements and the presence of multiple populations
- ✓ Photometric signatures
- ✓ Potential polluters
 - **Details on AGB physics**
 - Details on massive star physics
- ✓ GC initial masses
- ✓ Early dynamical and chemical evolution Towards a global scenario (?)

C-N, O-Na, Mg-Al, F-Na, Li-Na anticorrelations [(C+N+O)] ~ constant within experimental errors [Fe/H] constant

H-burning through CNO, NeNa, MgAl H-burning ashes mixed with pristine gas

 \rightarrow 2d generation

No recycling of He-burning products

No recycling of supernovae ejecta, except in some rare (most massive) cases (e.g., Ω Cen or M22)

Multiple stellar populations and their evolution in globular clusters

Part II – Multiple Populations Towards a new paradigm

- ✓ Heavy elements in GCs
- ✓ Light elements and the presence of multiple populations
- ✓ Photometric signatures
- ✓ Potential polluters
 - **Details on AGB physics**
 - **Details on massive star physics**
- ✓ GC initial masses
- ✓ Early dynamical and chemical evolution Towards a global scenario (?)

Proposed polluters (H-burning at T ~ 72 to 78 MK)

Fast Rotating Massive Stars (FRMS) $\geq 25 M_{\odot}$

Prantzos & Charbonnel (06) Decressin *et al.* (07a,b), Krause *et al.* (12,13)

D'Ercole *et al*. (11)

Massive binaries $\sim 10 - 20 \text{ M}_{\odot}$ De Mink *et al.* (10)

Supermassive stars $\sim 10^4 \ M_{\odot}$ Denissenkov & Hartwick (14)

C.CharbonnehelGCsstoEES12015uary 21

Adapted from Lattanzio

TP-AGB

TP-AGB

Difficult to get the O-Na anticorrelation (rather a correlation) Impact of mass loss, convection treatment, metallicity, etc ... Ventura & D'Antona (02, 05a,b,c, 06, 07, 08a,b, 09, 10)

Evolution of the surface abundances of O and Na

Delicate interplay of 3d dredge-up and hot bottom burning

(a) <u>No 3DUP, only HBB</u>
 → Large ¹⁶O depletion
 → ²³Na depletion

 (due to the lack of primary ²²Ne dredged-up)

(b) <u>Strong 3DUP, HBB, no mass loss</u>
 → 3DUP of the ¹⁶O-rich layers below the TP
 → ²³Na increase (from dredged-up ²²Ne)

\rightarrow O-Na CORRELATION

See also the models by Ventura, D'Antona et al., Lattanzio, Karakas, Fenner et al., Decressin, Charbonnel et al.

Denissenkov & Herwig (03) Full evolution models

Ventura & D' Antona (05a) See also Renzini & Voli (81), Sackmann & Boothroyd (91) Blöcker & Schönberner (91), D'Antona & Mazzitelli (96)

Full Spectrum of Turbulence (Canuto & Mazzitelli 91) → **much more efficient HBB** than with MLT

(on the AGB : higher L, stronger mass loss, less 3DUPs)

Evolution of the surface abundances of O and Na

Delicate interplay of 3d dredge-up and hot bottom burning

\rightarrow O-Na CORRELATION

« While Na and O appear to be anticorrelated in the cluster stars, from the stellar models they turn out to be correlated into the AGB ejecta...

Thus the 2d generation stars should exhibit an O-Na correlation, in glaring conflict with the observations.»

D'Ercole, D'Antona, Vesperini (11)

GCCE model including AGB predictions

Fenner et al. (04)

Almost 1 order of magnitude rise of [C+N+O / Fe] within 1Gyr of formation (due to the DUP of the products of He-burning)

C+N+O is found to be ~ constant in many GCs (Pilachowski et al. 88, Dickens et al. 91, Smith et al. 96, Ivans et al. 99)

Before the TP-AGB - Rotating models

Meridional circulation and shear turbulence Transport of angular momentum and of chemicals Zahn (92), Chaboyer & Zahn (95) Talon & Zahn (97), Maeder & Zahn (98)

Fig. courtesy G.Meynet

<u>Same physics successfully applied to</u> <u>Massive stars</u> : HeBCN anomalies (Maeder & Meynet 00) <u>Low-mass stars</u> : Hot side of the Li dip, Li in subgiants (Charbonnel & Talon 99, Palacios et al.03, Pasquini et al.04) <u>Intermediate-mass stars</u> : Primary N production at low Z (Chiappini et al. 06)

Decressin, Charbonnel, Siess, Palacios, Meynet & Georgy (09)

Before the TP-AGB - Rotating models

Decressin, Charbonnel, Siess, Palacios, Meynet & Georgy (09)

Before the TP-AGB - Rotating models

Decressin, Charbonnel, Siess, Palacios, Meynet & Georgy (09)

AGB scenario – Anticorrelation possible only by dilution

C.CharbonnehelGCsstoEES12015uary 21

AGB scenario

Who is the culprit? When and how did it happen?

Fast Rotating Massive Stars scenario

Prantzos & Charbonnel (06), Decressin *et al.* (07a,b,09,10) Schaerer & Charbonnel (10), Krause *et al.* (12,13)

Transport of angular momentum and chemicals by meridional circulation and shear turbulence Zahn (92), Maeder & Zahn (98), Meynet & Maeder (00)

<u>Same physics successfully applied to</u> <u>Massive stars</u> : HeBCN anomalies (Maeder & Meynet 00) <u>Intermediate-mass stars</u> : Primary N production at low Z (Chiappini *et al.* 06) <u>Low-mass stars</u> : Hot side of the Li dip, Li in subgiants (Charbonnel & Talon 99, Palacios *et al.*03, Pasquini *et al.* 04)

Higher rotational velocities in young massive clusters than in the field

(Huang & Gies 06; Strom et al. 05; Dufton et al. 06)

Be-type stars

FRMS – Main sequence

Main sequence and LBV phase at break-up : Transport of H-burning-products from the core to the surface and disk

After the LBV phase, the star moves away from break-up

The disk is disconnected from the star, and the classical radiatively-driven fast winds (≥ 1000 km.sec⁻¹) take over No recycling of the stellar ejecta of more advanced phases (He-burning products and metals)

FRMS – Evolution of the surface abundances

 $60 \text{ M}_{\odot}, Z = 5 \text{ x } 10^{-4}$ $\Omega/\Omega c = 0.95$ Meridional circulation and shear turbulence

NACRE (full black)

Illiadis et al. (01), Hale et al. (02, 04) nominal (long dahed blue) Id experimental limits (short dashed green) Id &

 $^{24}Mg(p,\gamma)$ (Iliadis et al. 01) x 10³ (dotted red)

Decressin et al. (07)

Multiple stellar populations and their evolution in globular clusters

Part II – Multiple Populations Towards a new paradigm

- ✓ Heavy elements in GCs
- ✓ Light elements and the presence of multiple populations
- ✓ Photometric signatures
- ✓ Potential polluters
 - **Details on AGB physics**
 - **Details on massive star physics**
- ✓ GC initial masses
- ✓ Early dynamical and chemical evolution Towards a global scenario (?)

If 1G polluters follow a standard IMF (Salpeter X=1.35 or Kroupa) today's ratio 1G:2G should be ~ 90:10 Decressin *et al.* (07), D'Ercole *et al.* (08)

 $\label{eq:states} \begin{array}{l} \hline \textbf{Flat polluter IMF} \\ X \sim 0.6 \text{ - } 0.8 \ (\geq 20 \ M_{\odot}) \\ X < -0.65 \ (5 \text{ - } 6.5 \ M_{\odot}) \end{array}$

Compare with Salpeter X = 1.35 Prantzos & Charbonnel (06) Smith & Norris (82, C-N data) D'Antona & Caloi (04) Downing & Sills (07) Marks & Kroupa (10) Marks *et al.* (12)

Delayed (~ 2 - 4 Myr) star formation Original gas : only 1P massive stars Polluted gas : only 2P low-mass stars Initial GC mass ~ 2 - 4 x present-day mass

Charbonnel et al. (14)

If 1G polluters follow a standard IMF (Salpeter X=1.35 or Kroupa) today's ratio 1G:2G should be ~ 90:10 Decressin *et al.* (07), D'Ercole *et al.* (08)

Standard IMF \rightarrow Loss of ~ 95 % of 1G low-mass stars

Prantzos & Charbonnel (06), Decressin *et al.* (07) D'Ercole *et al.* (08, 10), Carretta (10) Vesperini *et al.* (10) Schaerer & Charbonnel (11), Conroy (12)

8 - 25 x present-day mass
→ 6 - 20 % of the stellar mass of the Galactic halo

Carretta et al. (10, VII)

Multiple stellar populations and their evolution in globular clusters

Part II – Multiple Populations Towards a new paradigm

- ✓ Heavy elements in GCs
- ✓ Light elements and the presence of multiple populations
- ✓ Photometric signatures
- ✓ Potential polluters
 - **Details on AGB physics**
 - **Details on massive star physics**
- ✓ GC initial masses
- ✓ Early dynamical and chemical evolution
 Towards a global scenario (?)
 Or at least possible effects to take into account

A typical proto-GC in the framework of the self-enrichment with standard IMF

NGC 6752 (today's M ~ 3 x 10⁵ M_{\odot}, no Fe spread) Proto-GC cloud of M_{tot} = 9 x 10⁶ M_{\odot} Half-mass radius r_{1/2} = 3pc SFE = 1/3 Salpet

1P massive stars and 2P low-mass stars

Salpeter IMF for 1G stars with $Mi>0.8M_{\odot}$ ~ 5700 massive stars between 25 and 120 M_{\odot} log-normal IMF for 1&2G stars with $Mi\leq0.8M_{\odot}$

Mass-segregated cluster (Hillenbrand 97; de Grijs+02; Klessen 01; Bonnel+01)

Plummer profile for mass distribution

(Baumgardt+08; Decressin et al. 10; Baumgardt & Khalaj 14)

Gas mass proportional to

M_{tot}, SFE, core radius

Stellar properties (energy, winds, radiation, lifetimes) and feedback to ISM

Lyman-Werner photons $Q_{LW}(M) = 7 \times 10^{43} (M/M_{\odot})^{2.9} \text{ s}^{-1}$

- → Photodissociation of molecular H $T_{gaz} \sim 100 K$
- → No « classical » star formation Conroy & Spergel (11) Schaerer & Charbonnel (11) Krause *et al.* (13)

High ultraviolet radiation

Are there any 1st generation stars in GCs today?

Disc fed both by stellar processed matter and original material

Are there any 1st generation stars in GCs today?

Disc fed both by stellar processed matter and original material

Mass limit for stars to explode as SNe ? $M \ge 25 M_{\odot}$ may to turn silently into black holes (Portegies Zwart *et al.* 97; Ergma & van der Heuvel 98; Kobulnicky & Skillman 97; Fryer 99; Belczynski *et al.* 12)

Loss of 1G stars during the supernovae phase ?

Energetic arguments: SNe: agents of gas expulsion →Fast ejection of gas and SNe yields →Sudden change of gravitational potential and loss of 1G stars Baumgardt *et al.* (08), D' Ercole *et al.* (08), Decressin *et al.* (10)

Fast gas expulsion and loss of 1G stars – Superbubble

Growth of the superbubble via spherically symmetric thin shell approximation Brown, Burkert & Truran (91,95)

$$\frac{\partial}{\partial t}(\mathcal{M}v) = pA - \mathcal{M}g$$

Shell momentum given by the applied forces:

- p : bubble pressure depends on energy injection law E(t) and efficiency parameter for the transfer of energy to the gas (20%)
- g : gravitational acceleration

M : mass in the shell, v : shell velocity, A : surface area of the shell

$$\lambda = (a - g)\tau^2$$

Rayleigh-Taylor scale τ : time for the Ity to grow

Rayleigh-Taylor instability develops whenever shell acceleration overcomes gravitational acceleration (a-g > 0) and disrupts the shell when

→ This favours fall back towards the cluster centre, and in this case gas expulsion fails

Energy sources: Stellar winds and SNe explosions

Energy sources: Stellar winds and SNe explosions

While the energy injected by the SNe in total is sufficient, it is not delivered fast enough to overcome the RT instability

Slow and oscillatory shell expansion (<4Myr) (gravitational pull) Gravity declines sharply around r_{1/2} → shell acceleration

Rayleigh-Taylor Ity length scale λ = (a-g) τ²
→ Shell is burst and disrupted before it reaches the escape speed
→ Shell fragments fall back

Energy source: Sudden activation of dark remnants

> $25M_{\odot} \rightarrow 3M_{\odot}BH$, accretion of local gas adds energy to the gas at a rate of 20% of Eddington L

 $10-25M_{\odot} \rightarrow 1.5 M_{\odot}$ neutron stars, contribute 20% of Eddington L

Energy source: Sudden activation of dark remnants

Only coherent onset of accretion of local ISM onto the stellar remnants succeeds in expelling cold gas and unbinds 1st generation stars

Challenge: Gas-free young massive star clusters

Galaxy	Cluster	Age ^a	M_*^b	$r_{\rm h}^{c}$	C_5^d	Z^e
		(Myr)	$(10^{5}M_{\odot})$	(pc)		(Z _☉)
NGC 6946	1447	12 ± 2.5	8	17.4	0.46	0.5
NGC 1569	Α	6 ± 1	7.6	1.5	5.1	0.4
	В	15 ± 5	14	2.4	5.9	0.4
NGC 1705	1	12.5 ± 2.5	11	1.5	7.3	0.33
NGC 1140	1	5 ± 1	11	14	0.79	0.5
The Antennae	T352/W38220	4 ± 2	9.2	4.1	2.2	1
	Knot S	5 ± 1	16	14	1.1	1
ESO 338-IG04	Cluster 23	6^{+4}_{-2}	50	8.9	5.6	0.2

Bastian et al. (14)

YMCs in starburst and merging galaxies with no gas and no star formation

Figure 1. Top panel: a three-colour HST/ACS image of T352 in the Antennae galaxies; blue, green, and red represent images in the F435W, F550M, and F658N (H α) filters, respectively. The ID from Whitmore et al. (2010) is also shown. Bottom panel: a zoom in on the region in the box in the top panel.

Ages < ~ 15 Myr (although largely uncertain) Masses and radii comparable to the values postulated for GCs from self-enrichment considerations

Very compact

Compactness index : $C_5 = (M_*/10^5 M_{\odot}) / (r_h / pc)^{-1}$

Higher metallicity than old GCs

T352 in the Antennae

Gas-free YMCs – Individual gas expulsion modelling

Galaxy	Cluster	Age ^a	M_*^b	$r_{\rm h}^c$	C_5^d	Z^e	Ex/	Ex/	
		(Myr)	$(10^{5}M_{\odot})$	(pc)		(Z_{\odot})	\mathbf{W}^{f}	S№	
NGC 6946	1447	12 ± 2.5	8	17.4	0.46	0.5	Y	Y	<
NGC 1569	Α	6 ± 1	7.6	1.5	5.1	0.4	Ν	Ν	
	В	15 ± 5	14	2.4	5.9	0.4	Ν	Ν	
NGC 1705	1	12.5 ± 2.5	11	1.5	7.3	0.33	Ν	Ν	
NGC 1140	1	5 ± 1	11	14	0.79	0.5	Y	Y	← →
The Antennae	T352/W38220	4 ± 2	9.2	4.1	2.2	1	Ν	Ν	
	Knot S	5 ± 1	16	14	1.1	1	Ν	Y	4
ESO 338-IG04	Cluster 23	6^{+4}_{-2}	50	8.9	5.6	0.2	Ν	Ν	

Krause, Charbonnel, Bastian, Diehl (15)

Gas expulsion efficient only for the less compact objects Compactness index : $C_5 = (M_*/10^5 M_{\odot}) / (r_h / pc)^{-1}$ (Y) Success of gas expulsion by

- Stellar winds (W)
- SNe 10^{51} erg

with 20% feedback efficiency and assuming SFE = 0.3

Gas-free YMCs – Individual gas expulsion modelling

						-			riyper	
Galaxy	Cluster	Age ^a	<i>M</i> , ^b	$r_{\rm h}^c$	C_5^d	Z^e	Ex/	Ex/	novae	€SF,W,c ^g
NGC 6946	1447	12 ± 2.5	(10°M _☉) 8	17.4	0.46	(Z _☉) 0.5	Y Y	Y	10 ⁵³	(%) 20
NGC 1569	A B	6 ± 1 15 ± 5	7.6 14	1.5 2.4	5.1 5.9	0.4 0.4	N N	N N	10 ⁵³	80
NGC 1705	1	12.5 ± 2.5	11	1.5	7.3	0.33	N	N	1053	80
The Antennae	T352/W38220	5 ± 1 4 ± 2	9.2	4.1	2.2	1	n N	N I	1052	30 40
ESO 338-IG04	Knot S Cluster 23	5 ± 1 6^{+4}	16 50	14 8.9	1.1 5.6	1 0.2	N N	Y N	10^{52} 10 ⁵³	40
		-2							10	00

Krause, Charbonnel, Bastian, Diehl (15)

Gas expulsion efficient only for the less compact objects Compactness index : $C_5 = (M_*/10^5 M_{\odot}) / (r_h / pc)^{-1}$ (Y) Success of gas expulsion by

- Stellar winds (W)
- SNe 10⁵¹ erg

when assuming SFE = 0.3and 20% feedback efficiency

For the more compact YMCs, need hypernovae (10^{52} and 10^{53} erg) if SFE = 0.3

Or for a much higher $SFE \ge 0.8$ for the most compact clusters (less gas to be expelled)

→ However in this case, no loss of 1G stars, as the potential well does not change significantly

Abundance properties – The key role of initial cluster mass

Abundances and gas ejection – The key role of compactness

No problem to expulse the gas but no O-Na anticorrelation

> Multiple stellar populations with O-Na anticorrelation : Gas expulsion under very

Lines indicate the critical SFE for a given compactness index and energy scheme Compactness index : $C_5 = (M_*/10^5 M_{\odot}) / (r_h / pc)^{-1}$

Abundances and gas ejection – The key role of compactness

GC constraints : Require runaway gas accretion onto BH and NS (a) ~ 40Myrs If YMCs ~ GC progenitors, i.e., early gas loss or consumption : Require hypernovae,

Are YMSCs comparable to GC progenitors?

Formation, evolution, and survival of massive star clusters

Universal processes in the early and present-day universe?

- → Importance of comparative studies !
- \rightarrow Key role of multiple stellar populations !

(Some of the) Theoretical challenges of the next decade

- \rightarrow Tailor-made models for MSC member stars
- → Models of MSCs (N-body and chemodynamical) coupling stellar evolution, ISM physics, and feedback
- → Advanced population synthesis models accounting for the chemical and photometric peculiarities of multiple stellar populations

